Adjusting spring force of ankle foot orthoses according to gait type helps improving joint kinematics and timedistance parameters in patients with hemiplegia following stroke

Daniel Sabbagh, Jörg Fior, Ralf Gentz

Adjusting spring force of ankle foot orthoses according to gait type helps improving joint kinematics and timedistance parameters in patients with hemiplegia following stroke

Stroke

impairment of locomotion programmes
malfunction of executing extremities
false biomechanical situation
compensatory mechanisms
pathological gait
accompaning spasticity
ankle-foot orthoses (AFOs)

Gait classification in stroke

CLASSIFICATION OF GAIT TYPES ACCORDING TO PERRY								
Class	Description	Velocity		Knee (MSt)	Ankle (MSw)			
Class I	FAST Walker	Fast	(55%)	Normal	Neutral position			
Class II	MODERATE Walker	Moderate	(32%)	Flexed	Neutral position			
Class III	SLOW EXTENDED Walker	Slow	(17%)	Hyperextended	Plantar flexion			
Class IV	SLOW FLEXED Walker	Slow	(9%)	Flexed	Plantar flexion			

[Perry et al. 2014]

N.A.P.[®] Gait Classification

[Sabbagh et al. 2014]

Orthotic management in stroke rehabilitation

AFOs play an important role in stroke management [Fatone 2009]

different AFO designs [Sabbagh et al. 2013]

different outcome parameters

several studies on orthotic intervention in stroke [Bowers et al. 2004, Condie et al. 2008]

- positive effects of AFOs but not throughout
- mostly no differentiation of gait types
- poor methodology (e. g. different AFO designs)

positive results of changing AFOs spring force [Kobayashi et al. 2012, Kerkum et al. 2015]

<u>Central Question</u>: Can gait be improved by setting the AFOs stiffness according to the gait type?

Patients

n=8 (ø age 52.4, ø weigth 82 kg, ø heigth 177 cm) ischemic insult (Middle Cerebral Artery Stroke)

hemiplegia

gait type 1a+b (n=5), gait type 2a+b (n=3)

Inclusion criteria

6 Minute Walking Test, TUG Test

Exclusion criteria

pain

walking aids

Gait analysis

2-dimensional video analysis

2 conditions: a) Standardised footwear + DA-AFO, b) shoes only

3 full gait cycles

- time-distance parameters
- lateral kinematics: hip, knee, ankle
- maximum joint positions in stance (0-65% of gait cycle)

Wilcoxon rank-sum test (* p<0.05, ** p<0.01)

DA-AFO

Gait type 1 (knee hyperextension)

Gait type 2 (knee hyperflexion)

Kinematics

Time-Distance Parameters

		Gait type 1 (n=5)			Gait type 2 (n=3)			Reference (n=26)	
		Shoes only	DA-AFO	W RST	Shoes only	DA-AFO	W RST	Shoes only	
Hip max. ext	[°]	-10.2 (±6.1)	-9.9 (±3.6)	12	-13.1 (±0.9)	-15.2 (±1.7)	127	-19.0 (±4.5)	
Knee max. ext	[°]	0.8 (±4.0)	5.2 (±3.2)	*	11.4 (±3.3)	6.4 (±1.2)	*	3.8 (±4.1)	
Ankle at IC	[°]	-9.9 (±5.0)	4.6 (±2.1)	**	-5.1 ±11.4)	1.2 (±4.6)	152	-1.2 (±3.8)	
max. DF	[°]	10.7 (±3.1)	11.7 (±2,8)	1	18.1 (±1.9)	13.9 (±1.3)	*	14.7 (±4.3)	
Stride length	[m]	0.9 (±0.3)	1.0 (±0.2)	*	0.8 (±0.3)	0.9 (±0.3)	*	1.6 (±0.1)	
Velocity	[m/s]	0.5 (±0.3)	0.7 (±0.2)	**	0.5 (±0.2)	0.5 (±0.2)	*	1.4 (±0.2)	
Cadence	[Steps/min]	65.6 ±15.1)	73.7 (±8.7)	*	72.6 (±4.3)	74.7 (±8.7)	17.1	104.4 (±9.0)	
Stance	[% GC]	67.5 (±8.5)	66.0 (±7.1)	-	70.6 (±5.4)	64.6 (±4.0)	*	65.3 (±2.0)	
Swing	[% GC]	32.5 (±8.5)	34.0 (±7.1)		29.4 (±5.4)	35.5 (±4.0)	*	34.7 (±2.0)	

Wilcoxon rank-sum test (W RST): * indicates p < 0.05, ** indicates p < 0.01

Heel Rocker

Dorsal spring

Gait type 1

Gait type 2

Dorsiflexion resistance

Ventral spring

Gait type 1

Gait type 2

Conclusions

improvements in both gait types

- time-distance parameters follow kinematic improvements
- diffenerent spring forces different effects individual biomechanical situations
- setting spring force according to gait type leads to gait improvements [Kerkum et al. 2015]
- individual setting and alignment of AFO is necessary

Thank you for your attention!

	Gait type	Spring unit							
Patient #		ventral			dorsal				
		Code	Spring force	Nm/deg	Code	Spring force	Nm/deg		
1	1	yellow	very strong	0.64	yellow	very strong	0.64		
2	1	yellow	very strong	0.64	yellow	very strong	0.64		
3	2	yellow	very strong	0.64	green	medium	0.24		
4	2	white	strong	0.52	green	medium	0.24		
5	1	red	extra strong	1.71	green	medium	0.24		
6	1	white	strong	0.52	green	medium	0.24		
7	2	red	extra strong	1.71	green	medium	0.24		
8	1	yellow	very strong	0.64	yellow	very strong	0.64		