FIOR \& GENTZ Tools

Catalogue Pages of the Tools	
Section	Page
Making the Negative Cast	K2
Positioning the Pivot Points	K3
Tools for the Parallel Alignment of the System Ankle Joints and Tools' Assignment	K5
Tools for the Parallel Alignment of the System Knee Joints/Articulated System Side Bars and Tools' Assignment	K7
Spare Parts for the Tools	K9
Other Tools	K11
Tool Case	K13

e-Cast

h-Cast		
Fig.	Article Number	
1	WE3200	h-Cast
1a	WE3200-1/5	cover plate
1b	WE3200-1/4	plate with tenon, 5 mm
1c	WE3200-1/3	plate with tenon, 10 mm
1d	WE3200-1/2	plate with tenon, 20 mm
1e	WE3200-1/1	base plate with tenon

Application: to determine a heel height/leg length discrepancy.
For positioning the patient in a physiological position.

e-Cast in a Case		
Fig.	Article Number	Description
2	WE3400	e-Cast in a case
2a	ET3400-T	operator device
2 b	ET3410-WE	sensor for the thigh
2 c	ET3420-WE	sensor for the lower leg
2d	ET3430-WE	sensor for the foot
2 e	WZ2067-T08	screwdriver, hexalobular socket, $\mathrm{T} 8 \times 60 \mathrm{~mm}$
$2 f$	ET0710	cable
2 g	ET0780	adapter
2 h	ET0830-2450*	$3 \times$ batteries for e-Cast sensors*
w/o fig.	KL4200	glue dots for the fixation of the sensors, 48 pieces
w/o fig.	KL4601	washers for marking the mechanical pivot points, self-adhesive, 28 pieces

* When reordering the article, only one battery is delivered as a sales unit.

Application: for checking the joint angles during the making of the negative cast

e-Cast Accessory Parts		
Fig.	Article Number	Description
$2 b, 2 c$ and $2 d$	ET3400-WE	e-Cast sensor set for making the negative cast

Knee joint: the position of the mechanical pivot point at knee height is calculated by the Orthosis Configurator using the ap measurement.

With the Orthosis Configurator, the exact anatomical compromise pivot point according to Nietert P1 and the exact mechanical pivot point P can be calculated for your planned orthosis. We recommend placing the orthotic knee joint exactly on the calculated mechanical pivot point P. To do so, mark point P on the patient's leg according to our production technique. Later, the alignment aid (see catalogue page J 4) is pierced through this point P on the negative cast.

Why Does the Mechanical Pivot Point P Differ from the Anatomical Compromise Pivot Point According to Nietert P1?

Due to the rolling and sliding motion of the human knee, the anatomical pivot point moves on a centrode during flexion and extension. The anatomical compromise pivot point P1 centres the individual pivot points of the centrode as precisely as possible on only one point. For patients without any impairment on the muscles, it makes sense to place the axis of the orthotic knee joint on the anatomical compromise pivot point according to Nietert. To increase the mechanical knee control for patients with insufficient knee- and hip-securing muscles, the pivot point of the orthotic knee joint has to lie behind the anatomical compromise pivot point. How far the mechanical pivot point lies behind the anatomical compromise pivot point depends on the degree of insufficiency of the affected muscle groups. In order to reduce the bottom-up shifting of the femoral shell on the patient's leg and due to the difference to the centrode, the mechanical pivot point also has to lie further down.

P1 = anatomical compromise pivot point $P=$ mechanical pivot point

When the pivot point is optimally positioned, the course of the system side bars is approximately 50% due to the integrated posterior offset of the system knee joints. Please use our Orthosis Configurator:

Ankle joint: correct positioning of the mechanical pivot point at ankle height according to the study of Isman/Inman*

The mechanical axis is positioned in the frontal plane at the same level as the distal end of the fibula. The mechanical axis at ankle height is aligned to the centre of the lower leg and is parallel to the ground and perpendicular to the direction of movement under consideration of the individual external rotation.

- mechanical pivot point
* Isman RE, Inman VT (1969): Anthropometric Studies of the Human Foot and Ankle. Biomechanics Laboratory University of California.

anatomical axis at ankle height in the frontal plane (Isman and Inman, 1969)
In the recommended position, the mechanical axis intersects all of the functional axes (anatomical axis at ankle height and tibial longitudinal axis). Unintentional shifting of the orthosis and additional load on the ligamentous apparatus are kept to a minimum through the compromise axis. Depending on the footwear, it may be necessary to position the pivot point higher. This can lead to an impaired function of the mechanical joint due to the resulting movement of the orthosis.

Alignment Aid (Fig. 1-2)

Fig.	Article Number	Description	Unit
1	JA1001	alignment aid $11 \times 11 \times 300 \mathrm{~mm}$ for 10 and 12 mm system ankle joints	piece
2	JA1000	alignment aid $15 \times 15 \times 300 \mathrm{~mm}$ for all $14,16,20$ and 24 mm system joints as well as 12 mm system knee joints	piece

Application: the alignment aid is pierced through the mechanical pivot points marked on the negative cast and serves as a placeholder for the holder (see catalogue page K5ff.).

Calliper (Fig. 3)
Fig.
Article Number
WZ3000-32

Application: to determine the ap measurement at knee height

Outside Calliper (Fig. 4)				
Fig.	Article Number		Description	Unit
4	WZ3001-02	outside calliper		piece

Application: to determine the shoe sole thickness

piece
piece

Holders and Joint Retainers							
System Ankle Joints	Tools	Article Numbers for System Width					
		10 mm	12 mm	14 mm	16 mm	20 mm	24 mm
$\left(\begin{array}{l} \text { NEURO } \\ \text { CLASSIC } \end{array}\right.$	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
$\left(\mathbf{N E U R O}^{\mathrm{Hos}}\right.$	holder (1)	-	-	-	PE4000-LR	-	-
	joint retainer (2)	-	-	-	PE1025-LR	-	-
NEURO CLASSIC-SPRING	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
NEURO CLASSIC-SWNG	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
$\frac{\text { NEURO }}{\text { VAR:O-CLASSIC }}$	holder (1)	-	-	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	-	-	PE1012-LR	PE1013-LR	PE1025-LR	-
$\frac{\text { NEURO }}{\text { VAR.O-CLASSIC' }}$	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
NEURO VAR!O	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
NEURO VARIO2	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
$\frac{\text { NEURO }}{\text { VAR!O-SPRING }}$	holder (1)	-	-	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	-	-	PE1012-LR	PE1013-LR	PE1025-LR	-
$\frac{\text { NEURO }}{\text { VARIO-SPRING } 2}$	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
$\frac{\text { NEURO }}{\text { VARIO-SWNG }}$	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
NEURO SWING-CLASSIC	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
$\begin{gathered} \text { NEURO } \\ S_{S}^{\text {WING }} \\ \hline \phi \end{gathered}$	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	PE4000-LR
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	PE1127-LR
$\begin{aligned} & \text { NEURO } \\ & \text { SNING }_{2} \end{aligned}$	holder (1)	PE1001-LR	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1025-LR	-
$\underset{N_{-\infty}^{\text {SW/Na }}}{\text { NEU }}$	holder (1)	-	-	-	-	PE4000-LR	-
	joint retainer (2)	-	-	-	-	PE1025-LR	-
	holder (1)	-	PE1001-LR	PE4000-LR	PE4000-LR	PE4000-LR	-
	joint retainer (2)	-	PE1011-01/LR	PE1012-LR	PE1025-LR	PE1025-LR	-

Holders and Joint Retainers

Holders and Joint Retainers						
System Knee Joints and Articulated System Side Bars	Tools	Article Numbers for System Width				
		10 mm	12 mm	14 mm	16 mm	20 mm
NEUROCLASSIC	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1012-LR	PE1013-LR	PE1025-LR	PE1025-LR
NEURO VARIO zero	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1012-LR	PE1013-LR	PE1025-LR	PE1025-LR
NEURO CLASSIC	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1012-LR	PE1013-LR	PE1025-LR	PE1025-LR
NEURO VARIO	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1012-LR	PE1013-LR	PE1025-LR	PE1025-LR
$\begin{aligned} & \text { NEURO } \\ & \text { VAR!O2 } \end{aligned}$	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1012-LR	PE1013-LR	PE1025-LR	PE1025-LR
$\frac{\text { NEURO }}{\text { VAR:O-SWNG }}$	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1012-LR	PE1013-LR	PE1025-LR	PE1025-LR
Cneuro ACTIVE	holder (1)	PE2000-LR	-	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (2)	PZ4100-LR	-	PZ4100-LR	PZ3100-LR	PZ3100-LR
NEURO CLASSIC	holder (1)	-	-	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	-	PE1012-LR	PE1122-LR	PE1123-LR
NEURO MATIC	holder (1)	-	-	-	PE2000-LR	PE2000-LR
	joint retainer (3)	-	-	-	PE1015-LR	PE1025-LR
NEURO TRONIC	holder (1)	-	-	-	PE2000-LR	PE2000-LR
	joint retainer (3)	-	-	-	PE1015-LR	PE1025-LR
NEURO HiTRONIC	holder (1)	-	-	-	-	PE2000-LR
	joint retainer (3)	-	-	-	-	PE1025-LR
$\frac{\text { NEURO }}{\text { LOCK }}$	holder (1)	-	-	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	-	PE1012-LR	PE1013-LR	PE1015-LR
$\frac{\text { NEURO }}{\text { LOCK }}$	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1121-LR	PE1122-LR	PE1123-LR	PE1125-LR
NEURO Lock Function	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1121-LR	PE1122-LR	PE1123-LR	PE1125-LR
	holder (1)	-	PE2000-LR	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	PE1121-LR	PE1122-LR	PE1123-LR	PE1125-LR
$\underbrace{\text { NEURO }}_{\text {LOCK }_{j}^{400}}$	holder (1)	-	-	PE2000-LR	PE2000-LR	PE2000-LR
	joint retainer (3)	-	-	PE1012-LR	PE1122-LR	PE1123-LR

Spare Parts Tools

Holder (Fig. 1)				
Tool	Fig.	Description	Article Number	Quantity
PE1001-LR	1a	round material, aluminium	RM0050-AL060	1
	1 b	slotted pan head screw	SC2104-L04	1
	1 c	square: $11 \times 11 \times 20 \mathrm{~mm}$	PE0102-02	1
	1d	polyamide bushing	BP0908-L05	1
	1 e	headless pin with hexagon socket	SC9604-L04	1
PE2000-LR	1a	round material, aluminium	RM0120-AL100	1
	1 b	cheese head screw with hexagon socket	SC4005-L08	1
	1 c	square: $15 \times 15 \times 40 \mathrm{~mm}$	PE0102-01	1
	1d	polyamide bushing	BP1210-L10	1
	1 e	headless pin with hexagon socket	SC9606-L04ST	1
PE4000-LR	1a	round material, aluminium	RM0080-AL100	1
	1 b	cheese head screw with hexagon socket	SC4005-L08	1
	1 c	square: $15 \times 15 \times 30 \mathrm{~mm}$	PE0102-00	1
	1d	polyamide bushing	BP1210-L10	1
	1 e	headless pin with hexagon socket	SC9606-L04ST	1

Spare Parts Round Material			
Article Number	Fig.		Description
RMO300-AL100	w/o fig.	round material, aluminium, 300 mm long	Unit

Monocentric System Joints (Fig. 2)					ners for	
					NEURO ACTIVE System Joints/Articulated System Side Bars (Fig. 3)	
PE1010-01/LR	PE1011-01/LR	PE1012-LR	PE1013-LR	PE1015-LR	PZ3100-LR	PZ4100-LR
PE1025-LR	PE1121-LR	PE1122-LR	PE1123-LR	PE1125-LR		
PE1127-LR						

Joint Retainers for Monocentric System Joints (Fig. 2)				
Tool	Fig.	Scope of Delivery	Article Number	Quantity
PE1010-01/LR	2a	joint retainer	PE0102-07	1
	2 b	retaining screw	SC4034-L14/1	1
PE1011-01/LR	2a	joint retainer	PE0102-08	1
	2 b	retaining screw	SC4034-L18/1	1
PE1012-LR	2a	joint retainer	PE0102-10	1
	2 b	retaining screw	SC4035-L13	1
PE1013-LR	2a	joint retainer	PE0102-11	1
	2 b	retaining screw	SC4035-L14	1
PE1015-LR	2a	joint retainer	PE0102-11	1
	2 b	retaining screw	SC4035-L15	1
PE1025-LR	2a	joint retainer	PE0102-11	1
	2 b	retaining screw	SC4035-L15/1	1
PE1121-LR	2a	joint retainer	PE0102-09	1
	2 b	retaining screw	SC4034-L18/1	1
PE1122-LR	2a	joint retainer	PE0102-10	1
	2 b	retaining screw	SC4035-L17	1
PE1123-LR	2a	joint retainer	PE0102-11	1
	2 b	retaining screw	SC4035-L20	1
PE1125-LR	2a	joint retainer	PE0102-11	1
	2 b	retaining screw	SC4035-L22/1	1
PE1127-LR	2a	joint retainer	PE0102-12	1
	2 b	retaining screw	SC4035-L18	1

Joint Retainers for NEURO ACTIVE System Joints/Articulated System Side Bars (Fig. 3)

Tool	Fig.	Scope of Delivery	Article Number	Quantity
PZ3100-LR	3 a	joint retainer	PZ0310	1
	3 b	5° flexion stop	BK9051-F005	1
	3 c	slotted pan head screw	SC2103-L08	2
	3d	retaining screw	SC4048-L16	2
PZ4100-LR	3 a	joint retainer	PZ0410	1
	w/o fig.	0° flexion stop	KS9402-F000	1
	3 b	5° flexion stop	KS9402-F005	1
	3 c	slotted pan head screw	SC2103-L05	2
	3d	retaining screw	SC4038-L16	2

Tools

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Bolts for Trial with Knurled Nut (Fig. 1)

Article Number	Description	Unit
PS2000-010	$10 \times$ bolts for trial with knurled nut (bolt M3 $\times 20$)	package

Application: used to screw together the bands and system side bars for producing a trial fitting orthosis

Reamer (Fig. 2)			
Article Number		Description	Unit
WZ1225-070	reamer $7.0 \mathrm{~mm}, \mathrm{H7}$		piece
WZ1225-080	reamer 8.0 mm , H 7		piece
WZ1225-096	reamer $9.6 \mathrm{~mm}, \mathrm{H} 7$		piece
WZ1225-105	reamer $10.5 \mathrm{~mm}, \mathrm{H} 7$		piece
WZ1225-115	reamer $11.5 \mathrm{~mm}, \mathrm{H} 7$		piece
WZ1225-130	reamer 13mm, H 7		piece
WZ1225-150	reamer $15 \mathrm{~mm}, \mathrm{H} 7$		piece

Application: for reaming the bearing nut bore before inserting a repair bushing

Assembly Aid for Cover Plate (Fig. 3)		
Article Number	Description	Unit
WE9303-SF	assembly aid for cover plate for NEURO VARIO-SPRING system ankle joints, 16 and 20 mm system width	piece

Application: for an easier tensioning of the functional unit's pressure spring when assembling the NEURO VARIO-SPRING system ankle joint

Sliding Washer Centring Pin (Fig. 4)									Unit
Article Number	sliding washer centring pin for NEURO SWING Carbon system ankle joint, NEURO CLASSIC Carbon system ankle joint,	piece							
WE5500	NEURO LOCK Carbon and NEURO CLASSIC Carbon system knee joints								

Application: for positioning the sliding washers when assembling the NEURO SWING Carbon system ankle joint, NEURO CLASSIC Carbon system ankle joint, the NEURO LOCK Carbon and NEURO CLASSIC Carbon system knee joints

Assembly/Lamination Dummy for System Stirrup (Fig. 5)				
Article Number for System Width				
14 mm	16 mm	20 mm	Description	Unit
SF0912-1	SF0913-1	SF0915-1	assembly/lamination dummy for system stirrup	piece

Application: for positioning the system stirrup when making a new foot piece or when replacing the system stirrup. Due to the assembly/lamination dummy replacing the joint's upper part, there is no need to produce a new orthosis.

Parallel Alignment Gauge		Description
Fig.	Article Number	
6	PS1000	parallel alignment gauge
$6 a$	PS0102	centering screw
6b	PS0101	guide bushing
6c	PS0100-L060	aligning pin, length: 60 mm
6d	PS0100-L090	aligning pin, length: 90 mm
6e	PS0100-L120	aligning pin, length: 120 mm

Application: for checking the parallel alignment of system knee and system ankle joints as well as system stirrups on orthoses

Fig. 7

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Drilling Jig (Fig. 7)
Article Number
drilling jig for all system widths

Description
BS1000
drilling jig for all system widths
piece
Application: for precisely drilling holes in the system side bars of all system widths (for system side bars see catalogue page J1)

| Easy Cutter (Fig. 8) | | Description | |
| :---: | :---: | :---: | :---: | :---: |
| Article Number | | Unit | |
| WZ8083-01 | electric scissors to cut aramid and carbon fibres | | piece |

Spare Parts Easy Cutter			
Article Number		Description	Unit
WZ8083-01/1	cutting head for electrical scissors Easy Cutter		piece

Application: for precisely cutting curves and straight cuts into technical and synthetic as well as natural materials (for materials see catalogue page L1ff.)

Hexalobular Screwdriver (Fig. 9-15)				
Fig.	Article Number		Description	Unit
9	WZ5114-T06	hexalobular screwdriver, T-handle, T6		piece
10	WZ5114-T08	hexalobular screwdriver, T-handle, T8		piece
11	WZ5114-T10	hexalobular screwdriver, T-handle, T10		piece
12	WZ5114-T15	hexalobular screwdriver, T-handle, T15		piece
13	WZ5114-T20	hexalobular screwdriver, T-handle, T20		piece
14	WZ5114-T25	hexalobular screwdriver, T-handle, T25		piece
15	WZ5114-T30	Innensechsrundschlüssel, T-Griff, T30		piece

Application: for screwing and unscrewing hexalobular socket screws

Alignment Hexagonal Screwdriver with Spherical Head (Fig. 16-17)			
Fig.	Article Number	Description	Unit
16	WZ5112-3010	hexagonal screwdriver with spherical head, $3 \times 100 \mathrm{~mm}$	piece
16	WZ5112-4010	hexagonal screwdriver with spherical head, $4 \times 100 \mathrm{~mm}$	piece
17	WZ5112-5010	hexagonal screwdriver with spherical head, $5 \times 100 \mathrm{~mm}$	piece

Application: for screwing and unscrewing the alignment screw

Torque Screwdriver in a Case		
Fig.	Article Number	Description
18	WZ5500	torque screwdriver in a case with 7 bits
18a	-	torque screwdriver, 1-6Nm
18 b	WZ5600-I30	bit, hexagon socket, $3 \mathrm{~mm}, 25 \mathrm{~mm}$ long, for M5 screws
18c	WZ5600-I40	bit, hexagon socket, 4mm, 25 mm long, for M6 screws
18d	WZ5604-T10	bit, hexalobular socket, TX10, 25 mm long, for M3 screws and for pressing screw* 10 mm
18e	WZ5604-T15	bit, hexalobular socket, TX15, 25 mm long, for M4 screws
18f	WZ5604-T20	bit, hexalobular socket, TX20, 25 mm long, for M5/M6 screws and for pressing screw* 12 mm
18 g	WZ5604-T25	bit, hexalobular socket, TX25, 25 mm long, only for pressing screw* $14 / 16 / 20 \mathrm{~mm}$
18h	WZ5604-T30	bit, hexalobular socket, TX25, 25 mm long, for M6 screws

* NEURO CLASSIC-SPRING, NEURO CLASSIC-SWING, NEURO VARIO-CLASSIC 2, NEURO VARIO 2, NEURO VARIO-SPRING 2, NEURO VARIO-SWING, NEURO SWING-CLASSIC, NEURO SWING, NEURO SWING 2 and NEURO HiSWING

Application: for tightening screws with a defined torque

Tool Case (Fig. 1)

Tool Case				
Fig.	Art.-No.	Description	Quantity	Catalogue Page
1	WK1000	tool case complete, filled with tools	1	K13
-	WK1000-0	tool case with empty storage foam inlays, for filling by yourself	1	-
1a	PZ4100-LR	joint retainers for 10 and 14 mm NEURO ACTIVE system joints/articulated system side bars as well as articulated side bars with gear segments*, 16 mm centre distance	2	K10
1 b	PZ3100-LR	joint retainers for 16 and 20 mm NEURO ACTIVE system joints/articulated system side bars	2	K10
1 c	PZ2100-LR	joint retainers for articulated side bars with gear segments, 22 mm centre distance	2	-
1d	PE1010-01/LR	joint retainers for all 10 mm system ankle joints (laser marking: $1 / \mathrm{Y}$)	2	
1e	PE1011-01/LR	joint retainers for all 12 mm system ankle joints (laser marking: $2 / \mathrm{Z}$)	2	
1 f	PE1121-LR	joint retainers for 12 mm NEURO FLEX MAX and NEURO LOCK MAX (laser marking: 2/A)	2	
1 g	PE1012-LR	joint retainers for all 14 mm system ankle joints as well as for the system knee joints 12 mm NEURO CLASSIC zero, NEURO VARIO zero, NEURO CLASSIC, NEURO VARIO, NEURO VARIO 2 and NEURO VARIO-SWING and 14 mm NEURO CLASSIC Carbon, NEURO LOCK and NEURO LOCK Carbon (laser marking: 4/B)	4	
1h	PE1013-LR	joint retainers for all 16 mm system ankle joints, excluding 16 mm NEURO SWING Carbon and NEURO CLASSIC Carbon, as well as for the system knee joints 14 mm NEURO CLASSIC zero, NEURO VARIO zero, NEURO CLASSIC, NEURO VARIO, NEURO VARIO 2 and NEURO VARIO-SWING and 16 mm NEURO LOCK (laser marking: 5/C)	4	
1 i	PE1015-LR	joint retainers for 16 mm NEURO MATIC and NEURO TRONIC as well as 20 mm NEURO LOCK (laser marking: 6/C)	2	K10
1j	PE1025-LR	joint retainers for all 20 mm system ankle joints and 16 mm NEURO SWING Carbon, for the system knee joints 20 mm NEURO MATIC, NEURO TRONIC and NEURO HiTRONIC as well as 16 and 20 mm NEURO CLASSIC zero, NEURO VARIO zero, NEURO CLASSIC, NEURO VARIO, NEURO VARIO 2 and NEURO VARIO-SWING (laser marking: 7/C)	4	
1k	PE1125-LR	joint retainers for 20 mm NEURO FLEX MAX and NEURO LOCK MAX (laser marking: 8/C)	2	
11	PE1123-LR	joint retainers for 16 mm NEURO FLEX MAX and NEURO LOCK MAX as well as 20 mm NEURO LOCK Carbon and NEURO CLASSIC Carbon (laser marking: 9/C)	2	
1 m	PE1122-LR	joint retainers for 14 mm NEURO FLEX MAX and NEURO LOCK MAX as well as 16 mm NEURO CLASSIC Carbon and NEURO LOCK Carbon (laser marking: 10/B)	2	
1 n	PE1127-LR	joint retainers for 24 mm NEURO SWING (laser marking: 11/D)	2	
10	PE4000-LR	holder, model technique, square: $15 \times 15 \times 30 \mathrm{~mm}$ for all $14,16,20$ und 24 mm system ankle joints	2	
1p	PE2000-LR	holder, model technique, square: $15 \times 15 \times 40 \mathrm{~mm}$ for all system knee joints	2	K9
1 q	PE1001-LR	holder, model technique, square: $11 \times 11 \times 20 \mathrm{~mm}$ for all 10 and 12 mm system ankle joints	2	
1 r	PS1000	parallel alignment gauge	1	K11
1s	JA1001	alignment aid $11 \times 11 \times 300 \mathrm{~mm}$ for 10 and 12 mm system ankle joints	1	
1t	JA1000	alignment aid $15 \times 15 \times 300 \mathrm{~mm}$ for all $14,16,20$ and 24 mm system ankle/system knee joints as well as for 12 mm system knee joints	2	K4
1 u	RM0300-AL060	round material, aluminium, $6 \times 300 \mathrm{~mm}$	1	K9
1 v	RM0300-AL100	round material, aluminium, $10 \times 300 \mathrm{~mm}$	1	K9
1w	PS2000-010	bolts for trial with knurled nut	10	K11
1x	BS1000	drilling jig	1	K12
1 y	WE9303-SF	assembly aid for cover plate for system ankle joints with dorsiflexion assist, 16 and 20 mm system width	1	K11

* You can find articulated side bars with gear segments in our product catalogue Articulated Side Bars for Knee Orthoses.

Application: the tools included in the tool case are i.e. used for the parallel alignment of the FIOR \& GENTZ system joints. Detailed information concerning each tool is given on the corresponding catalogue pages.

You can store already bought FIOR \& GENTZ tools in the tool case with empty foam inlays.

